S

Deploy AI Models on Vercel

Complete guide to deploying AI models on Vercel with serverless functions

Deploy AI Models on Vercel

Vercel provides serverless infrastructure perfect for deploying lightweight AI models and API endpoints.

Prerequisites

  • Vercel account
  • Vercel CLI installed
  • Next.js project (recommended)
  • Model API keys (OpenAI, Anthropic, etc.)

Deployment Options

1. Serverless Functions

Deploy AI inference as serverless API routes:

// app/api/chat/route.ts
import { openai } from '@ai-sdk/openai'
import { streamText } from 'ai'

export async function POST(req: Request) {
  const { messages } = await req.json()
  
  const result = await streamText({
    model: openai('gpt-4'),
    messages,
  })
  
  return result.toUIMessageStreamResponse()
}

2. Edge Functions

For lower latency:

export const runtime = 'edge'

export async function POST(req: Request) {
  // Your AI logic here
}

3. Using Vercel AI SDK

npm install ai @ai-sdk/openai
import { generateText } from 'ai'
import { openai } from '@ai-sdk/openai'

const { text } = await generateText({
  model: openai('gpt-4'),
  prompt: 'What is AI?',
})

Environment Variables

Add in Vercel Dashboard or CLI:

vercel env add OPENAI_API_KEY
vercel env add ANTHROPIC_API_KEY

Deploy

vercel deploy --prod

Monitoring

  • Use Vercel Analytics
  • Enable Web Vitals tracking
  • Monitor function execution time
  • Track error rates

Cost Optimization

  • Use edge functions for lower costs
  • Implement caching strategies
  • Set function timeouts appropriately
  • Monitor bandwidth usage

Production Checklist

  • [ ] Set up environment variables
  • [ ] Configure custom domain
  • [ ] Enable analytics
  • [ ] Set up error tracking
  • [ ] Implement rate limiting
  • [ ] Configure CORS
  • [ ] Add authentication
  • [ ] Set up monitoring alerts