Deploy AI Models on Microsoft Azure
Complete guide to deploying open-source AI models on Azure
Deploy Open-Source AI Models on Microsoft Azure
Microsoft Azure provides comprehensive AI infrastructure with Azure Machine Learning and Azure Kubernetes Service.
Prerequisites
- Azure subscription
- Azure CLI installed
- Resource group created
- Basic understanding of Azure services
Deployment Options
1. Azure Virtual Machines
Best for: Direct control and flexibility
Step 1: Create GPU VM
az vm create --resource-group ai-models-rg --name ai-model-vm --image UbuntuLTS --size Standard_NC6s_v3 --admin-username azureuser --generate-ssh-keys
Step 2: Install NVIDIA Drivers
# SSH into VM
ssh azureuser@<vm-ip>
# Install drivers
sudo apt update
sudo apt install -y nvidia-driver-535
sudo reboot
2. Azure Kubernetes Service (AKS)
Best for: Production-grade deployments
Step 1: Create AKS Cluster
az aks create --resource-group ai-models-rg --name ai-cluster --node-count 3 --enable-cluster-autoscaler --min-count 1 --max-count 10 --vm-set-type VirtualMachineScaleSets
Step 2: Add GPU Node Pool
az aks nodepool add --resource-group ai-models-rg --cluster-name ai-cluster --name gpupool --node-count 1 --node-vm-size Standard_NC6s_v3 --enable-cluster-autoscaler --min-count 0 --max-count 5
3. Azure Machine Learning
Best for: Managed ML workflows
from azure.ai.ml import MLClient
from azure.ai.ml.entities import ManagedOnlineEndpoint, ManagedOnlineDeployment
ml_client = MLClient.from_config()
# Create endpoint
endpoint = ManagedOnlineEndpoint(
name="llama-endpoint",
description="LLaMA model endpoint"
)
ml_client.online_endpoints.begin_create_or_update(endpoint)
# Deploy model
deployment = ManagedOnlineDeployment(
name="llama-deployment",
endpoint_name="llama-endpoint",
model=model,
instance_type="Standard_NC6s_v3",
instance_count=1
)
ml_client.online_deployments.begin_create_or_update(deployment)
Cost Optimization
Spot VMs
Save up to 90%:
az vm create --resource-group ai-models-rg --name spot-vm --priority Spot --max-price -1 --eviction-policy Deallocate
Reserved Instances
- 1-year: 40% savings
- 3-year: 60% savings
Auto-shutdown
az vm auto-shutdown --resource-group ai-models-rg --name ai-model-vm --time 1900
Monitoring
Azure Monitor
az monitor metrics alert create --name high-cpu-alert --resource-group ai-models-rg --scopes /subscriptions/{subscription-id}/resourceGroups/ai-models-rg/providers/Microsoft.Compute/virtualMachines/ai-model-vm --condition "avg Percentage CPU > 80" --window-size 5m
Security
- Use Azure Key Vault for secrets
- Enable Azure AD authentication
- Implement Network Security Groups
- Use Private Endpoints
- Enable Azure Defender
Troubleshooting
GPU Not Available
Check VM size supports GPUs and drivers are installed correctly
Deployment Failures
Review Azure Activity Log and deployment logs in Azure Portal
Production Checklist
- [ ] Set up Azure Monitor
- [ ] Configure Application Insights
- [ ] Enable auto-scaling
- [ ] Implement Azure Load Balancer
- [ ] Set up backup with Azure Backup
- [ ] Configure Virtual Network
- [ ] Enable encryption
- [ ] Set up Azure DevOps pipeline
Related Guides
Deploy AI Models on AWS
Complete guide to deploying open-source AI models on Amazon Web Services
Deploy AI Models on Google Cloud Platform
Complete guide to deploying open-source AI models on GCP
Deploy AI Models on Microsoft Azure
Complete guide to deploying open-source AI models on Azure
Deploy AI Models with Docker
Complete guide to containerizing and deploying AI models with Docker