S
S
Home / Models / Phi-3 Mini

Phi-3 Mini

by Microsoft

7.5
KYI Score

Smallest Phi-3 model optimized for mobile and edge deployment.

LLMMITFREE3.8B
Official WebsiteHugging Face

Quick Facts

Model Size
3.8B
Context Length
128K tokens
Release Date
Apr 2024
License
MIT
Provider
Microsoft
KYI Score
7.5/10

Best For

→Mobile apps
→Edge deployment
→Real-time
→IoT

Performance Metrics

Speed

10/10

Quality

6/10

Cost Efficiency

10/10

Specifications

Parameters
3.8B
Context Length
128K tokens
License
MIT
Pricing
free
Release Date
April 23, 2024
Category
llm

Key Features

Ultra-efficientLong contextFastMIT license

Pros & Cons

Pros

  • ✓Extremely efficient
  • ✓Long context
  • ✓MIT license
  • ✓Fast

Cons

  • !Limited capabilities
  • !Small model
  • !Lower quality

Ideal Use Cases

Mobile apps

Edge deployment

Real-time

IoT

Phi-3 Mini FAQ

What is Phi-3 Mini best used for?

Phi-3 Mini excels at Mobile apps, Edge deployment, Real-time. Extremely efficient, making it ideal for production applications requiring llm capabilities.

How does Phi-3 Mini compare to other models?

Phi-3 Mini has a KYI score of 7.5/10, with 3.8B parameters. It offers extremely efficient and long context. Check our comparison pages for detailed benchmarks.

What are the system requirements for Phi-3 Mini?

Phi-3 Mini with 3.8B requires appropriate GPU memory. Smaller quantized versions can run on consumer hardware, while full precision models need enterprise GPUs. Context length is 128K tokens.

Is Phi-3 Mini free to use?

Yes, Phi-3 Mini is free and licensed under MIT. You can deploy it on your own infrastructure without usage fees or API costs, giving you full control over your AI deployment.

Related Models

LLaMA 3.1 405B

9.4/10

Meta's largest and most capable open-source language model with 405 billion parameters, offering state-of-the-art performance across reasoning, coding, and multilingual tasks.

llm405B

LLaMA 3.1 70B

9.1/10

A powerful 70B parameter model that balances performance and efficiency, ideal for production deployments requiring high-quality outputs.

llm70B

BGE M3

9.1/10

Multi-lingual, multi-functionality, multi-granularity embedding model.

llm568M