LangChain
Build LLM applications with LangChain
Integrating Open Source Models with LangChain
LangChain is a popular framework for building LLM applications. This guide shows you how to integrate open source models with LangChain.
#
Installation
Install LangChain and required dependencies:
bash
pip install langchain langchain-community transformers torch
#
Basic Usage
Connect to open source models using HuggingFace:
python
from langchain.llms import HuggingFacePipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_id = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
llm = HuggingFacePipeline(pipeline=pipe)
response = llm("What is artificial intelligence?")
print(response)
#
Building RAG Applications
Create retrieval-augmented generation systems:
python
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore = FAISS.from_texts(["Document 1", "Document 2"], embeddings)
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
#