S

Mixtral 8x7B vs Phi-3 Medium

Comprehensive comparison of two leading open-source AI models

Mixtral 8x7B

ProviderMistral AI
Parameters46.7B (8x7B MoE)
KYI Score8.7/10
LicenseApache 2.0

Phi-3 Medium

ProviderMicrosoft
Parameters14B
KYI Score8.3/10
LicenseMIT

Side-by-Side Comparison

FeatureMixtral 8x7BPhi-3 Medium
ProviderMistral AIMicrosoft
Parameters46.7B (8x7B MoE)14B
KYI Score8.7/108.3/10
Speed8/109/10
Quality8/107/10
Cost Efficiency9/1010/10
LicenseApache 2.0MIT
Context Length32K tokens128K tokens
Pricingfreefree

Performance Comparison

SpeedHigher is better
Mixtral 8x7B8/10
Phi-3 Medium9/10
QualityHigher is better
Mixtral 8x7B8/10
Phi-3 Medium7/10
Cost EffectivenessHigher is better
Mixtral 8x7B9/10
Phi-3 Medium10/10

Mixtral 8x7B Strengths

  • Excellent speed-quality balance
  • Efficient architecture
  • Strong multilingual
  • Apache 2.0 license

Mixtral 8x7B Limitations

  • Smaller context than LLaMA 3.1
  • Complex architecture

Phi-3 Medium Strengths

  • Excellent efficiency
  • MIT license
  • Long context
  • Fast

Phi-3 Medium Limitations

  • Lower quality than larger models
  • Limited capabilities

Best Use Cases

Mixtral 8x7B

Code generationMultilingual tasksReasoningContent creation

Phi-3 Medium

Edge deploymentMobile appsChatbotsCode assistance

Which Should You Choose?

Choose Mixtral 8x7B if you need excellent speed-quality balance and prioritize efficient architecture.

Choose Phi-3 Medium if you need excellent efficiency and prioritize mit license.